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Abstract.
Background: Vascular risk factors promote cerebral small vessel disease and neuropathological changes, particularly in
white matter where large-caliber axons are located. How Alzheimer’s disease pathology influences the brain’s vulnerability
in this regard is not well understood.
Objective: Systemic vascular risk was assessed in relation to cerebrospinal fluid concentrations of neurofilament light, a
biomarker of large-caliber axonal injury, evaluating for interactions by clinical and protein markers of Alzheimer’s disease.
Methods: Among Alzheimer’s Disease Neuroimaging Initiative participants with normal cognition (n = 117), mild cognitive
impairment (n = 190), and Alzheimer’s disease (n = 95), linear regression related vascular risk (as measured by the modified
Framingham Stroke Risk Profile) to neurofilament light, adjusting for age, sex, education, and cognitive diagnosis. Interactions
were assessed by cognitive diagnosis, and by cerebrospinal fluid markers of A�42, hyperphosphorylated tau, and total tau.
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Results: Vascular risk and neurofilament light were not related in the main effect model (p = 0.08). However, interactions
emerged for total tau (p = 0.01) and hyperphosphorylated tau (p = 0.002) reflecting vascular risk becoming more associated
with cerebrospinal fluid neurofilament light in the context of greater concentrations of tau biomarkers. An interaction also
emerged for the Alzheimer’s disease biomarker profiles (p = 0.046) where in comparison to the referent ‘normal’ biomarker
group, individuals with abnormal levels of both A�42 and total tau showed stronger associations between vascular risk and
neurofilament light.
Conclusion: Older adults may be more vulnerable to axonal injury in response to higher vascular risk burdens in the context
of concomitant Alzheimer’s disease pathology.
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INTRODUCTION

Modifiable vascular risk factors, such as sys-
tolic hypertension [1], diabetes mellitus [2], and
smoking [3, 4] are associated with an increased
incidence of cognitive impairment and dementia,
likely due to effects on cerebral small vessel dis-
ease (SVD) contributing to abnormal cognitive
aging [5]. Cerebral SVD exists in the majority
of pathologically-confirmed dementia cases [6] and
disrupts network connectivity [7, 8], conferring cog-
nitive impairment and decline [9]. Longitudinal data
from large-scale multicenter collaborations (i.e., the
Leukoaraiosis and Disability (LADIS) Study) are
increasingly substantiating the role of cerebral SVD
and white matter changes in contributing to cognitive
and motor declines, depressive symptomatology, and
reduction of functional autonomy with aging [10],
including clinical manifestation of vascular-related
dementia [11].

Cerebral SVD is the most common pathology to
co-occur with Alzheimer’s disease (AD) [12, 13],
lowers the threshold for clinical expression of AD
pathology [14], and compromises the efficacy of anti-
amyloid therapy [15]. Extant literature has yet to fully
establish the extent to which AD and SVD confer
disparate versus overlapping pathological cascades,
constituting a critical knowledge gap with important
implications for identifying effective prevention and
treatment targets. Even if SVD and AD represent
unique injury pathways, these two disease processes
may exacerbate one another and compromise the
aging brain in a synergistic manner [13].

Cerebral white matter is particularly vulnera-
ble to ischemic injury from SVD in advanced age
[16], but little is known about whether co-occurring
AD pathology affects susceptibility to white matter
damage, including axonal injury, in response to vas-
cular risk factors. Animal models of compromised
cerebrovascular function suggest ischemia promotes

diffuse amyloid-� protein precursor expression [17]
and increased amyloid-� (A�) deposition [18]. Given
that A� clearance occurs through vascular-mediated
pathways across the blood-brain barrier [19] and
through interstitial fluid bulk flow between perivas-
cular basement membranes [20, 21], cerebral SVD
may propagate A� deposition by interfering with the
integrity of clearance pathways [22], contributing to
worse disease trajectory [23, 24]. Progressive degen-
eration of cholinergic cells in AD can also disrupt
regional cerebral blood flow homeostasis [25, 26],
increasing susceptibility of the cerebral vasculature to
damage [27, 28]. Overall, vascular risk likely drives
cognitive and neurodegenerative changes through
non-AD pathways [29] but concomitantly exacer-
bates AD-related damage once neural injury exists
[30].

A current limitation in understanding the implica-
tions of SVD is that the cerebral microvasculature is
too small to be clearly visualized in vivo, thus inter-
fering with prompt diagnosis and intervention [31].
Accordingly, there is a pressing need to better char-
acterize underlying physiological changes related to
cerebrovascular disease burden and unhealthy brain
aging [31]. Neurofilament light (NFL) is a protein
polymer found in large-caliber myelinated axons.
Elevated cerebrospinal fluid (CSF) levels of NFL
are posited to reflect axonal injury [32] and corre-
late with white matter damage and clinical severity
across neurodegenerative diseases [33–35]. Unlike
the mechanistically heterogeneous nature of white
matter hyperintensities observed on magnetic res-
onance imaging (MRI) fluid-attenuated inversion
recovery (FLAIR), which correspond to multiple
structural changes and pathological processes [36],
CSF concentrations of NFL allow for measurement of
axonal injury. Accordingly, CSF NFL offers a means
of measuring axonal damage in the aging brain. Given
the high prevalence of vascular-related health prob-
lems among older adults at risk for AD [37], more
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research is warranted to elucidate how burgeoning
AD pathology influences the aging brain’s vulnera-
bility to vascular-related damage, including axonal
injury. This research topic is especially clinically rel-
evant given the modifiable nature of most vascular
risk factors and paucity of promising prevention and
treatment targets for AD.

In the current study, we assess how vascular risk
burden as measured by the Framingham Stroke Risk
Profile (FSRP) relates to axonal injury as measured by
CSF NFL in the context of varying degrees of con-
comitant AD pathology. The FSRP is a composite
measure of vascular risk burden. Originally designed
to predict incidents of clinical stroke, FSRP scores
also correspond to neuroimaging evidence of cerebral
SVD, including white matter hyperintensities [38, 39]
silent cerebral infarcts [40, 41], and microbleeds [42].
We leveraged the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) cohort, which represents a spec-
trum from normal cognition (NC), mild cognitive
impairment (MCI), and clinical AD. In doing so, we
are able to 1) test interactions between FSRP and
cognitive diagnosis to determine whether FSRP and
NFL associations depend on the presence of clini-
cal symptoms and 2) test interactions between FSRP
and AD CSF biomarkers (i.e., A�42, total tau [t-tau],
and hyperphosphorylated tau [p-tau]) to determine
how associations differ as a function of co-occurring
evidence of AD. Since co-occurring cerebrovascular
disease and AD synergistically confer worse clinical
outcomes [43, 44], we hypothesize that the associa-
tion between FSRP and CSF NFL will be strongest
with increased AD pathology defined as presence of
abnormal concentrations of AD CSF biomarkers (i.e.,
A�42, t-tau, and p-tau) and clinical evidence (i.e.,
stronger associations across cognitive spectrum from
NC to clinical AD).

MATERIALS AND METHODS

Participants

Participants were drawn from the ADNI, launched
in 2003 (http://adni.loni.usc.edu). The original ADNI
study enrolled approximately 800 participants, aged
55–90 years, excluding major neurological dis-
ease (other than AD), and history of brain lesion,
head trauma, or psychoactive medication use (for
full inclusion/exclusion criteria, please refer to
http://www.adni-info.org). Participants were enrolled
based on criteria outlined in the ADNI pro-
tocol (http://www.adni-info.org/Scientists). Specifi-

cally, NC participants showed no signs of depression,
MCI, or dementia. Participants with MCI presented
with subjective memory concerns and impaired
performance on Wechsler Memory Scale Logical
Memory II in the context of preserved daily living
activities and no significant levels of impairment in
other cognitive domains nor signs of dementia. Partic-
ipants with AD met clinical criteria for dementia with
a predominantly amnestic profile. Written informed
consent was obtained from all participants prior to
assessments at each site. Analysis of ADNI’s publicly
available database was approved by our local Institu-
tional Review Board. We accessed publicly available
data from ADNI on 06/09/2017. For the current study,
we included participants from the ADNI1 cohort with
available baseline CSF biomarker samples and vas-
cular risk factor data necessary to calculate the FSRP.

Vascular risk burden

To assess systemic vascular risk burden, we cal-
culated a modified FSRP in the ADNI dataset based
on baseline visit data. FSRP assigns points by sex
for age, systolic blood pressure (accounting for anti-
hypertensive medication usage), history of diabetes,
current cigarette smoking, prevalent cardiovascular
disease (i.e., history of myocardial infarction, angina
pectoris, coronary insufficiency, intermittent claudi-
cation, or heart failure), left ventricular hypertrophy,
and history of atrial fibrillation [45]. The FSRP calcu-
lation was modified for the current study by excluding
left ventricular hypertrophy due to this information
being unavailable in ADNI [29, 46].

Lumbar puncture and biochemical analyses

ADNI’s CSF protocol, including collection, pro-
cessing, and storage procedures, have been outlined
in detail [47]. We leveraged the master CSF
dataset compiled by the University of Pennsylvania
(UPENNBIOMK MASTER) and used the first mea-
sure of A�42, t-tau, and p-tau for each participant.
CSF NFL levels were quantified by the Blennow lab-
oratory in Sweden using a sandwich ELISA method
(UmanDiagnostics, Sweden) following established
procedures [48].

AD biomarker profiles

Participants were classified into AD [49] and sus-
pected non-AD pathology (SNAP) [50] biomarker
profiles according to A� and t-tau-defined neurode-

http://adni.loni.usc.edu
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generation (ND) status, including biomarker negative
(A�–/ND–), amyloid positive only (A�+/ND–),
SNAP (i.e., A�–/ND+), and both biomarker pos-
itive (A�+/ND+). CSF A�42 values ≤192 pg/mL
reflected amyloid positivity, and t-tau values ≥93
pg/mL reflected presence of ND based on established
cutoffs [51].

Experimental design and statistical analysis

Prior to analyses, six participants were excluded
for outlying CSF NFL values (defined as >4 standard
deviations). For hypothesis testing, linear regres-
sion cross-sectionally related modified FSRP (minus
points assigned to age) to CSF NFL concentration
(pg/mL), adjusting for age, sex, education, and cogni-
tive diagnosis (NC, MCI, AD). Next, a series of inter-
action terms, including 1) FSRP × cognitive diagno-
sis, 2) FSRP × CSF A�42, 3) FSRP × CSF t-tau, 4)
FSRP × CSF p-tau, and 5) FSRP × AD biomarker
profile were related to CSF NFL in separate mod-
els. For interpretive purposes, models were repeated
stratifying by cognitive diagnosis, by CSF A�42 and
CSF t-tau using established cutoffs [51], and by AD
biomarker profile. Models were not stratified by CSF
p-tau due to its established cutoff having relatively
poor sensitivity and specificity in distinguishing AD
from NC in the ADNI cohort [51]. Significance was
set a priori at � = 0.05. Analyses were conducted with
R version 3.3.1 (http://www.r-project.org).

RESULTS

Participant characteristics

The sample included 402 adults age 54–89 years
(74 ± 7 years), including 117 participants with NC,
190 participants with MCI, and 95 participants with
clinical AD. CSF NFL ranged from 405 to 5,315
pg/mL. CSF A�42 ranged from 71 to 300 pg/mL.
CSF t-tau ranged from 28 to 495 pg/mL. CSF p-tau
ranged from 8 to 115 pg/mL. See Table 1 for par-
ticipant characteristics by cognitive diagnosis. In this
participant sample, CSF NFL weakly correlated with
p-tau (r = 0.14, p < 0.0001) and total tau (r = 0.23,
p < 0.0001). CSF NFL and A�42 were not correlated
(p = 0.66).

FSRP and CSF NFL

See Table 2 for detailed results of main effect,
interaction, and stratified analyses. Among the whole

sample, FSRP appeared modestly related to NFL, but
the association did not meet the a priori statistical sig-
nificance threshold (� = 17.97, p = 0.08). FSRP did
not interact with cognitive diagnosis on NFL lev-
els (F(2,398) = 0.30; p = 0.74). In stratified models,
FSRP was unrelated to NFL in each of the three
diagnostic groups (p-values>0.29).

FSRP interacted with t-tau (� = 0.40, p = 0.01) and
p-tau (� = 1.67, p = 0.002) on CSF NFL. In strati-
fied models, FSRP was associated with NFL among
t-tau positive (� = 47.57, p = 0.002) but not among
t-tau negative participants (� = –0.96, p = 0.94). See
Fig. 1A for illustration. Although the FSRP inter-
action with amyloid was nonsignificant (� = –0.25,
p = 0.18), a similar pattern was observed in stratified
analyses whereby FSRP was associated with NFL
among amyloid positive (� = 35.17, p = 0.006) but not
amyloid negative participants (� = –19.35, p = 0.24).
See Fig. 1B for illustration.

Similar to the continuous biomarker interac-
tions, FSRP interacted with AD biomarker profile
(F(3,389) = 2.68; p = 0.046). Compared to the
A�–/ND– referent group, the A�+/ND+ group
differed in the association between FSRP and NFL
(� = 71.3, p = 0.005). No differences were observed
between the referent group and the A�+/ND–
(� = 42.4, p = 0.10) or A�–/ND+(� = 55.3, p = 0.29)
groups. In stratified models, FSRP was associated
with NFL in the A�+/ND+ group (� = 58.74,
p = 0.002) but not in the A�–/ND– (� = –32.20,
p = 0.06), A�+/ND– (� = 14.18, p = 0.49), or
A�–/ND+ (� = 30.18, p = 0.39) groups. See Fig. 2
for illustration.

DISCUSSION

We evaluated associations between FSRP, a com-
prehensive index of vascular risk, and axonal injury
among community-dwelling older adults ranging
from cognitively normal to clinical dementia, assess-
ing for interactions with cognitive diagnosis and CSF
measurements of AD pathology. Axonal injury was
quantified using CSF NFL, a biomarker posited to
reflect large-caliber axon damage [52] that is ele-
vated in MCI [48] and clinical AD [32] and may
explain unique variance in clinical manifestation of
AD beyond core AD pathology [32]. Within the
ADNI cohort, we found the association between
vascular risk burden and axonal damage appears
amplified by the presence of AD pathology. Specif-
ically, FSRP interacted with both p-tau and t-tau in

http://www.r-project.org
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Table 1
Participant characteristics

NC MCI AD p

n = 117 n = 190 n = 95
Age, y 76 ± 5 75 ± 7 75 ± 8 0.28
Sex, % female 48 33 43 0.03a

Race, % White Non-Hispanic 91 94 98 0.09
Education, y 16 ± 3 16 ± 3 15 ± 3 0.06
APOE �4, % carrier 25 55 69 <0.001abc

Modified FSRP, total∗ 12.8 ± 3.2 12.3 ± 4.0 12.8 ± 4.2 0.91
Systolic blood pressure, mmHg 133 ± 17 134 ± 18 135 ± 15 0.56
Anti-hypertensive medication usage, % 54 48 57 0.31
Diabetes mellitus, % 5 5 3 0.77
Current cigarette smoking, % 39 41 46 0.57
Prevalent CVD, % 3 6 4 0.41
Atrial fibrillation, % 1 1 0 0.68

CSF NFL, pg/mL 1120 ± 450 1405 ± 636 1631 ± 764 <0.001abc

CSF A�42, pg/mL 206 ± 55 165 ± 54 144 ± 41 <0.001abc

CSF t-tau, pg/mL 70 ± 30 103 ± 61 122 ± 58 <0.001abc

CSF p-tau, pg/mL 25 ± 15 36 ± 18 41 ± 20 <0.001abc

Biomarker Group
A�–/ND–, % 54 24 6 <0.001abc

A�+/ND–, % 27 31 29 0.79
A�+/ND+, % 10 43 61 <0.001abc

A�–/ND+, % 9 2 3 0.02a

Values denoted as mean ± standard deviation or percentage. ∗Modified FSRP excludes points assigned for
left ventricular hypertrophy. Modified FSRP minus age points for each diagnostic group were NC 5.9 ± 2.8,
MCI 5.9 ± 2.9, and AD 6.2 ± 2.7. aNC differed from MCI, p < 0.05; bMCI differed from AD, p < 0.05; cNC
differed from AD, p < 0.05. AD, Alzheimer’s disease; APOE, apolipoprotein E; CSF, cerebrospinal fluid;
CVD, cardiovascular disease; FSRP, Framingham Stroke Risk Profile; MCI, mild cognitive impairment;
NC, normal cognition; ND, neurodegeneration; NFL, neurofilament light; p-tau, hyperphosphorylated tau;
t-tau, total tau.

Table 2
Main effect, interaction, and sub-group analyses of FSRP on NFL

A� 95% Confidence t-value F-value p
Interval

*Covariates+
FSRP 17.97 –1.93, 37.87 1.78 – 0.08
FSRP x diagnosis† – – – 0.30 0.74

NC 13.58 –12.97, 40.12 1.01 – 0.31
MCI 14.85 –14.54, 44.23 1.00 – 0.32
AD 28.97 –26.13, 84.07 1.04 – 0.30

FSRP x A�42 –0.25 –0.62, 0.12 –1.35 – 0.18
A�42 positive 35.17 10.42, 59.93 2.80 – 0.006
A�42 negative –19.35 –51.98, 13.27 –1.17 – 0.24

FSRP x T-tau 0.40 0.09, 0.71 2.53 – 0.01
T-tau positive 47.57 17.23, 77.91 3.10 – 0.002
T-tau negative –0.96 –27.87, 25.95 –0.07 – 0.94

FSRP x P-tau 1.67 0.59, 2.74 3.05 – 0.002
FSRP x Biomarker Group† – – – 2.68 0.046

A�–/ND– –32.20 –65.11, 0.72 –1.94 – 0.06
A�+/ND– 14.18 –26.72, 55.08 0.69 – 0.49
A�+/ND+ 58.74 21.30, 96.17 3.12 – 0.002
A�–/ND+(SNAP) 30.18 –45.28, 105.65 0.91 – 0.39

∗Covariates include age, sex, education, and cognitive diagnosis. †ANOVA; all other models presented are
linear regression analyses. CSF, cerebrospinal fluid; FSRP, Framingham Stroke Risk Profile; MCI, mild
cognitive impairment; NC, normal cognition; ND, neurodegeneration; NFL, neurofilament light; P-tau,
hyperphosphorylated tau; SNAP, suspected non-AD pathology; T-tau, total tau.
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A. FSRP and CSF NFL by Total Tau Status

B. FSRP and CSF NFL by Amyloid Status

Fig. 1. FSRP and CSF NFL Stratified by Biomarker Status. Solid
lines reflect unadjusted values of CSF NFL concentration (Y axis,
pg/mL) corresponding to modified FSRP score excluding points
assigned for age (X axis). Shading reflects 95% confidence inter-
val. Amyloid positive, CSF A�42 <193 pg/mL; amyloid negative,
CSF A�42 ≥193 pg/mL; t-tau positive, t-tau ≥93 pg/mL; t-tau
negative, t-tau<93 pg/mL; CSF, cerebrospinal fluid; FSRP, Fram-
ingham Stroke Risk Profile; NFL, neurofilament light; t-tau, total
tau.

a manner suggesting that associations with axonal
injury became stronger in participants commensurate
with their extent of neurofibrillary tangle pathol-
ogy (p-tau) and neurodegeneration (t-tau). A similar
interaction also emerged for AD biomarker profile

Fig. 2. FSRP and CSF NFL by Alzheimer’s Disease and Suspected
Non-AD Pathophysiology (SNAP) Profile. Solid lines reflect
unadjusted values of CSF NFL concentration (Y axis, pg/mL)
corresponding to modified FSRP score excluding points assigned
for age (X axis). Shading reflects 95% confidence interval; CSF,
cerebrospinal fluid; FSRP, Framingham Stroke Risk Profile; NFL,
neurofilament light.

wherein compared to the referent ‘normal’ biomarker
group, individuals with abnormal levels of both A�42
(indicating cerebral amyloid deposition) and total
tau (indicating neurodegeneration) showed stronger
associations between vascular risk and axonal injury.
While FSRP did not interact with A�42 on NFL,
stratified analyses indicated a modest association was
present within the amyloid positive group. However,
these stratified results should be interpreted with
caution given the lack of a significant interaction
effect.

Older adults may be more vulnerable to axonal
injury in response to vascular risk burden when neural
integrity is already compromised by the cumulative
effects of mounting AD pathology. It is unlikely
that tau pathology on its own directly accounts for
the stronger association between vascular risk fac-
tors and axonal injury since prior work has not
consistently supported a link between CSF tau and
white matter damage [53], including work from our
group investigating white matter macrostructure [36]
and microstructure damage [54]. Like NFL, tau is
a cytoskeleton protein, but tau differs from NFL in
that it promotes microtubule stability and is more
abundant in smaller, unmyelinated axons localized
predominantly in cortical tissue. In contrast, NFL
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primarily serves to increase diameter and conduc-
tion velocity of large-caliber, myelinated subcortical
axons [55, 56]. Compared to tau, NFL appears to have
more clinical staging and prognostic utility across
brain diseases involving prominent degradation of
white matter tracks. For example, CSF concentrations
of NFL but not tau differentiate between relapsing-
remitting and primary progressive types of multiple
sclerosis [57]. CSF concentrations of NFL but not
tau also distinguish clinical Huntington’s disease
patients from preclinical gene expansion carrier con-
trols and correlate with 5-year probability of disease
onset among the gene expansion carriers [58]. While
NFL does not appear to have disease specificity as a
marker of axonal injury, its utility in reflecting clin-
ical staging across diseases may convey value as a
concomitant biomarker to be studied in conjunction
with more disease-specific markers of AD.

The dominant theory of AD pathophysiology
posits that biomarkers become abnormal in an
ordered but temporally overlapping manner. A long
asymptomatic phase of amyloid aggregation eventu-
ally reaches a threshold with subsequent progressive
neuronal dysfunction and death corresponding to
CSF t-tau elevations [59]. Accordingly, elevated t-
tau and p-tau coupled with increased evidence of
amyloid aggregation may reflect more advanced AD
pathology and neurodegeneration, which could com-
promise neural resilience to vascular risk burden,
resulting in greater vulnerability to axonal injury.

It is noteworthy that cognitive diagnosis did not
modify the association between FSRP and NFL,
suggesting the link between vascular risk burden
and axonal injury occurs in both asymptomatic and
symptomatic individuals. This finding has important
therapeutic implications, as vascular-related axonal
damage in AD may be detectable both prior to and
throughout the clinical manifestation of symptoms.
Future research should incorporate longitudinal mod-
els to further elucidate how vascular-related axonal
injury temporally relates to the emergence and pro-
gression of AD symptoms.

Collectively, findings from this study suggest
presence of vascular risk factors confers a greater
likelihood of axonal damage in the context of mount-
ing AD pathology and neurodegeneration, regardless
of clinical status. These findings should be interpreted
in the context of certain study limitations. The cross-
sectional nature of our design limits our ability to
draw causal inferences or speculate about temporal
ordering of pathological changes or whether spe-
cific substrates of the AD pathophysiological cascade

drive the observed associations. Unfortunately, gold-
standard MRI FLAIR data are unavailable in this
particular subset of the ADNI cohort, so white matter
hyperintensities and other markers of cerebral SVD
could not be examined. Other limitations to con-
sider when interpreting results include that ADNI
participants are predominantly non-Hispanic white
and well-educated, so findings may not be generaliz-
able to more diverse populations. Furthermore, ADNI
eligibility criteria excluded for overt cerebrovascu-
lar disease (i.e., Hachinski score ≤4), so stroke risk
and cerebrovascular pathology are likely underrepre-
sented in the ADNI sample compared to the general
population. Even with this study exclusion, we still
observed associations between vascular risk burden
and axonal injury. We speculate that in a cohort with
greater vascular risk factors and cerebral SVD, the
associations reported here would be stronger.

Despite these limitations, our study has several
strengths, including the large, well-characterized
dataset representing the entire cognitive aging spec-
trum from clinically normal to dementia. This range
permitted evaluation of vascular risk and axonal
injury in the context of preclinical and clinical AD.
Additionally, the FSRP incorporates multiple vascu-
lar risk factors, offering a more comprehensive and
integrated risk index, as opposed to examining risk
factors individually.

Vascular-related axonal injury represents an
important potential target for primary prevention and
clinical intervention among individuals at high risk
for developing AD or in the preclinical stages of AD.
Whereas there are no current treatments or preventa-
tive therapies for AD, most vascular health problems
are preventable or modifiable in nature. Primary pre-
vention and close medical management of vascular
health conditions should be emphasized to mitigate
the clinical progression of AD in older adults. Fur-
ther investigation into mechanisms linking vascular
risk factors and axonal damage in AD and in non-
AD-related abnormal cognitive aging is warranted to
examine longitudinal associations and identify pos-
sible therapeutic targets.
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